Search results
Results from the WOW.Com Content Network
In mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable, semidecidable, Turing-acceptable or Turing-recognizable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language.
The definition of a computably enumerable set as the domain of a partial function, rather than the range of a total computable function, is common in contemporary texts. This choice is motivated by the fact that in generalized recursion theories, such as α-recursion theory, the definition corresponding to domains has been found to be more ...
A recursive language is a formal language for which there exists a Turing machine that, when presented with any finite input string, halts and accepts if the string is in the language, and halts and rejects otherwise. The Turing machine always halts: it is known as a decider and is said to decide the recursive language. By the second definition ...
The set of recursive languages is a subset of both RE and co-RE. [3] In fact, it is the intersection of those two classes, because we can decide any problem for which there exists a recogniser and also a co-recogniser by simply interleaving them until one obtains a result.
A more general class of sets than the computable ones consists of the computably enumerable (c.e.) sets, also called semidecidable sets. For these sets, it is only required that there is an algorithm that correctly decides when a number is in the set; the algorithm may give no answer (but not the wrong answer) for numbers not in the set.
A language is computably enumerable (synonyms: recursively enumerable, semidecidable) if there is a computable function f such that f(w) is defined if and only if the word w is in the language. The term enumerable has the same etymology as in computably enumerable sets of natural numbers.
Note that the set of grammars corresponding to recursive languages is not a member of this hierarchy; these would be properly between Type-0 and Type-1. Every regular language is context-free, every context-free language is context-sensitive, every context-sensitive language is recursive and every recursive language is recursively enumerable.
Recursively enumerable languages are closed under Kleene star, concatenation, union, and intersection, but not under set difference; see Recursively enumerable language#Closure properties. The equivalence of unrestricted grammars to Turing machines implies the existence of a universal unrestricted grammar, a grammar capable of accepting any ...