Search results
Results from the WOW.Com Content Network
A Fistful of TOWs – TOW stands for "tube-launched, optically tracked, wire-guided missiles" [1] — is a set of rules designed for wargames with 6 mm miniatures at a scale of either 1" = 100 metres or 1 cm = 100 metres. The rules for modern combat have specifically been designed to provide relatively fast play.
FFTPACK is a package of Fortran subroutines for the fast Fourier transform.It includes complex, real, sine, cosine, and quarter-wave transforms.It was developed by Paul Swarztrauber of the National Center for Atmospheric Research, and is included in the general-purpose mathematical library SLATEC.
Download as PDF; Printable version; ... 3.3.10 [1] / 15 September ... It implements the FFT algorithm for real and complex-valued arrays of arbitrary size and dimension.
Download QR code; Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15
An implementation in place produces a predictable, but highly unordered sequence of indices, for example for N=16 the final order of the 8 linear remainders is (0, 4, 2, 6, 1, 7, 3, 5). At the end of the recursion, for s = n -1 , there remain 2 n -1 linear polynomials encoding two Fourier coefficients X 0 and X 2 n -1 for the first and for the ...
You are free to: copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. You must, where you do any of the above:
The Bailey's FFT (also known as a 4-step FFT) is a high-performance algorithm for computing the fast Fourier transform (FFT). This variation of the Cooley–Tukey FFT algorithm was originally designed for systems with hierarchical memory common in modern computers (and was the first FFT algorithm in this so called "out of core" class).
The Cooley–Tukey algorithm, named after J. W. Cooley and John Tukey, is the most common fast Fourier transform (FFT) algorithm. It re-expresses the discrete Fourier transform (DFT) of an arbitrary composite size = in terms of N 1 smaller DFTs of sizes N 2, recursively, to reduce the computation time to O(N log N) for highly composite N (smooth numbers).