Search results
Results from the WOW.Com Content Network
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyribonucleic acid (DNA) are nucleic acids.
An example of RNA secondary structure. This image includes several structural elements, including; single-stranded and double-stranded areas, bulges, internal loops and hairpin loops. Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded DNA molecules.
5' small nucleolar RNA capped and 3' polyadenylated long noncoding RNA - SRP RNA: signal recognition particle RNA CL00003: ssRNA single stranded RNA - stRNA: small temporal RNA - tasiRNA: trans-acting siRNA - tmRNA: transfer-messenger RNA RF00023: Bacterial RNA molecule with dual tRNA-like and messenger RNA-like properties uRNA U spliceosomal ...
Simple diagram of transcription elongation. One strand of the DNA, the template strand (or noncoding strand), is used as a template for RNA synthesis. As transcription proceeds, RNA polymerase traverses the template strand and uses base pairing complementarity with the DNA template to create an RNA copy (which elongates during the traversal).
For example, research utilizing this method has revealed that genetic differences and their subsequent expression as mRNAs can also impact translation rate in an RNA-specific manner. [ 21 ] Expanding on this concept, a more recent development is single-cell ribosome profiling, a technique that allows us to study the translation process at the ...
The earliest work in RNA structural biology coincided, more or less, with the work being done on DNA in the early 1950s. In their seminal 1953 paper, Watson and Crick suggested that van der Waals crowding by the 2`OH group of ribose would preclude RNA from adopting a double helical structure identical to the model they proposed - what we now ...
In 2000, a second small RNA was characterized: let-7 RNA, which represses lin-41 to promote a later developmental transition in C. elegans. [20] The let-7 RNA was found to be conserved in many species, leading to the suggestion that let-7 RNA and additional "small temporal RNAs" might regulate the timing of development in diverse animals ...
Diagram of ribosomal RNA types and how they combine to create the ribosomal subunits. Both prokaryotic and eukaryotic ribosomes can be broken down into two subunits, one large and one small. The exemplary species used in the table below for their respective rRNAs are the bacterium Escherichia coli ( prokaryote ) and human ( eukaryote ).