Search results
Results from the WOW.Com Content Network
In C++, associative containers are a group of class templates in the standard library of the C++ programming language that implement ordered associative arrays. [1] Being templates, they can be used to store arbitrary elements, such as integers or custom classes.
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
The distance between the limiting iterators, in terms of the number of applications of the operator ++ needed to transform the lower limit into the upper one, equals the number of items in the designated range; the number of distinct iterator values involved is one more than that. By convention, the lower limiting iterator "points to" the first ...
In computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. foreach is usually used in place of a standard for loop statement.
One common property of all sequential containers is that the elements can be accessed sequentially. Like all other standard library components, they reside in namespace std. The following containers are defined in the current revision of the C++ standard: array, vector, list, forward_list, deque.
Maple has two forms of for-loop, one for iterating over a range of values, and the other for iterating over the contents of a container. The value range form is as follows: for i from f by b to t while w do # loop body od; All parts except do and od are optional. The for I part, if present, must come first.
In a doubly linked list, one can insert or delete a node in a constant number of operations given only that node's address. To do the same in a singly linked list, one must have the address of the pointer to that node, which is either the handle for the whole list (in case of the first node) or the link field in the previous node. Some ...
The order of enumeration is always deterministic for a given set of keys by sorting. This is the case for tree-based implementations, one representative being the <map> container of C++. [16] The order of enumeration is key-independent and is instead based on the order of insertion.