Search results
Results from the WOW.Com Content Network
Algorithmic bias describes systematic and repeatable errors in a computer system that create "unfair" outcomes, such as "privileging" one category over another in ways different from the intended function of the algorithm. Bias can emerge from many factors, including but not limited to the design of the algorithm or the unintended or ...
Ideally, algorithms should be designed to eliminate bias from their decision-making outcomes. This means they ought to evaluate only relevant characteristics of the input data, avoiding distinctions based on attributes that are generally inappropriate in social contexts, such as an individual's ethnicity in legal judgments.
Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased (see bias versus consistency for more). All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias ...
“If bias encoding cannot be avoided at the algorithm stage, its identification enables a range of stakeholders relevant to the AI health technology's use (developers, regulators, health policy ...
Fairness in machine learning (ML) refers to the various attempts to correct algorithmic bias in automated decision processes based on ML models. Decisions made by such models after a learning process may be considered unfair if they were based on variables considered sensitive (e.g., gender, ethnicity, sexual orientation, or disability).
The inductive bias (also known as learning bias) of a learning algorithm is the set of assumptions that the learner uses to predict outputs of given inputs that it has not encountered. [1] Inductive bias is anything which makes the algorithm learn one pattern instead of another pattern (e.g., step-functions in decision trees instead of ...
The bias (first term) is a monotone rising function of k, while the variance (second term) drops off as k is increased. In fact, under "reasonable assumptions" the bias of the first-nearest neighbor (1-NN) estimator vanishes entirely as the size of the training set approaches infinity. [12]
In the case of decision trees, where Pr(y|x) is the proportion of training samples with label y in the leaf where x ends up, these distortions come about because learning algorithms such as C4.5 or CART explicitly aim to produce homogeneous leaves (giving probabilities close to zero or one, and thus high bias) while using few samples to ...