Search results
Results from the WOW.Com Content Network
A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse.
Considering the pencils of confocal ellipses and hyperbolas (see lead diagram) one gets from the geometrical properties of the normal and tangent at a point (the normal of an ellipse and the tangent of a hyperbola bisect the angle between the lines to the foci). Any ellipse of the pencil intersects any hyperbola orthogonally (see diagram).
In geometry, a conjugate hyperbola to a given hyperbola shares the same asymptotes but lies in the opposite two sectors of the plane compared to the original hyperbola. A hyperbola and its conjugate may be constructed as conic sections obtained from an intersecting plane that meets tangent double cones sharing the same apex .
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
Feuerbach Hyperbola. In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Schiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle. [1]
In the Cartesian plane, these pairs lie on a hyperbola, and when the double sum is fully expanded, there is a bijection between the terms of the sum and the lattice points in the first quadrant on the hyperbolas of the form xy = k, where k runs over the integers 1 ≤ k ≤ n: for each such point (x,y), the sum contains a term g(x)h(y), and ...
The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation = In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length