Search results
Results from the WOW.Com Content Network
Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
The ring of formal power series over the complex numbers is a UFD, but the subring of those that converge everywhere, in other words the ring of entire functions in a single complex variable, is not a UFD, since there exist entire functions with an infinity of zeros, and thus an infinity of irreducible factors, while a UFD factorization must be ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
This article uses the coefficient extraction operator [] for formal power series, as well as the (labelled) operators (for cycles) and (for sets) on combinatorial classes, which are explained on the page for symbolic combinatorics. Given a combinatorial class, the cycle operator creates the class obtained by placing objects from the source ...
This is an analytic function of q in the interior of the unit disk, and can also be considered as a formal power series in q. The special case ϕ ( q ) = ( q ; q ) ∞ = ∏ k = 1 ∞ ( 1 − q k ) {\displaystyle \phi (q)=(q;q)_{\infty }=\prod _{k=1}^{\infty }(1-q^{k})} is known as Euler's function , and is important in combinatorics , number ...
where the notation [] means extraction of the coefficient of from the following formal power series (see the non-exponential Bell polynomials and section 3 of [7]). More generally, sums related to these weighted harmonic number expansions of the Stirling numbers of the first kind can be defined through generalized zeta series transforms of ...
In mathematics, a power series (in one variable) is an infinite series of the form = = + + + … where represents the coefficient of the nth term and c is a constant called the center of the series. Power series are useful in mathematical analysis , where they arise as Taylor series of infinitely differentiable functions .