Search results
Results from the WOW.Com Content Network
In computer programming, an iterator is an object that progressively provides access to each item of a collection, in order. [1] [2] [3]A collection may provide multiple iterators via its interface that provide items in different orders, such as forwards and backwards.
In mathematics, iteration may refer to the process of iterating a function, i.e. applying a function repeatedly, using the output from one iteration as the input to the next. Iteration of apparently simple functions can produce complex behaviors and difficult problems – for examples, see the Collatz conjecture and juggler sequences.
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop.All generators are also iterators. [1] A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values.
The loop calls the Iterator::next method on the iterator before executing the loop body. If Iterator::next returns Some(_), the value inside is assigned to the pattern and the loop body is executed; if it returns None, the loop is terminated.
A simplified version of a typical iteration cycle in agile project management. The basic idea behind this method is to develop a system through repeated cycles (iterative) and in smaller portions at a time (incremental), allowing software developers to take advantage of what was learned during development of earlier parts or versions of the system.
In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the i-th approximation (called an "iterate") is derived from the previous ones.
For-loops have two parts: a header and a body. The header defines the iteration and the body is the code executed once per iteration. The header often declares an explicit loop counter or loop variable. This allows the body to know which iteration is being executed.