Search results
Results from the WOW.Com Content Network
Terraform is an infrastructure-as-code software tool created by HashiCorp. Users define and provide data center infrastructure using a declarative configuration language known as HashiCorp Configuration Language (HCL), or optionally JSON .
In the untyped lambda calculus, where the basic types are functions, lifting may change the result of beta reduction of a lambda expression. The resulting functions will have the same meaning, in a mathematical sense, but are not regarded as the same function in the untyped lambda calculus. See also intensional versus extensional equality.
In programming language semantics, normalisation by evaluation (NBE) is a method of obtaining the normal form of terms in the λ-calculus by appealing to their denotational semantics. A term is first interpreted into a denotational model of the λ-term structure, and then a canonical (β-normal and η-long) representative is extracted by ...
Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.
Dirichlet lambda function, λ(s) = (1 – 2 −s)ζ(s) where ζ is the Riemann zeta function; Liouville function, λ(n) = (–1) Ω(n) Von Mangoldt function, Λ(n) = log p if n is a positive power of the prime p; Modular lambda function, λ(τ), a highly symmetric holomorphic function on the complex upper half-plane
Lambda expression may refer to: Lambda expression in computer programming, also called an anonymous function , is a defined function not bound to an identifier. Lambda expression in lambda calculus , a formal system in mathematical logic and computer science for expressing computation by way of variable binding and substitution.
System F (also polymorphic lambda calculus or second-order lambda calculus) is a typed lambda calculus that introduces, to simply typed lambda calculus, a mechanism of universal quantification over types. System F formalizes parametric polymorphism in programming languages, thus forming a theoretical basis for languages such as Haskell and ML.
McCarthy published its design in a paper in Communications of the ACM in 1960, entitled "Recursive Functions of Symbolic Expressions and Their Computation by Machine, Part I" [2] (Part II was never published). He showed that with a few simple operators and a notation for functions, one can build a Turing-complete language for algorithms.