Search results
Results from the WOW.Com Content Network
A system will be said to be inconsistent if it yields the assertion of the unmodified variable p [S in the Newman and Nagel examples]. In other words, the notion of "contradiction" can be dispensed when constructing a proof of consistency; what replaces it is the notion of "mutually exclusive and exhaustive" classes.
Indeed, the above proof that the law of excluded middle implies proof by contradiction can be repurposed to show that a decidable proposition is ¬¬-stable. A typical example of a decidable proposition is a statement that can be checked by direct computation, such as "is prime" or "divides ".
For example, some unicellular organisms have genomes much larger than that of humans. ... Performative contradiction: Some statements contradict the conditions that ...
When this recursion creates a metaphysical impossibility through contradiction, the regress or circularity is vicious. Again, the liar paradox is an instructive example: "This statement is false"—if the statement is true, then the statement is false, thereby making the statement true, thereby making the statement false, and so on. [15] [18]
Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical argument, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.
In logic, the law of non-contradiction (LNC; also known as the law of contradiction, principle of non-contradiction (PNC), or the principle of contradiction) states that contradictory propositions cannot both be true in the same sense at the same time, e. g. the two propositions "the house is white" and "the house is not white" are mutually exclusive.
In classical logic, intuitionistic logic, and similar logical systems, the principle of explosion [a] [b] is the law according to which any statement can be proven from a contradiction. [1] [2] [3] That is, from a contradiction, any proposition (including its negation) can be inferred; this is known as deductive explosion. [4] [5]
Dialetheism (/ d aɪ ə ˈ l ɛ θ i ɪ z əm /; from Greek δι-di-'twice' and ἀλήθεια alḗtheia 'truth') is the view that there are statements that are both true and false. More precisely, it is the belief that there can be a true statement whose negation is also true. Such statements are called "true contradictions", dialetheia, or ...