Search results
Results from the WOW.Com Content Network
Mathematics of cyclic redundancy checks. The cyclic redundancy check (CRC) is a check of the remainder after division in the ring of polynomials over GF (2) (the finite field of integers modulo 2). That is, the set of polynomials where each coefficient is either zero or one, and arithmetic operations wrap around.
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [1][2] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated ...
Computation of cyclic redundancy checks. Computation of a cyclic redundancy check is derived from the mathematics of polynomial division, modulo two. In practice, it resembles long division of the binary message string, with a fixed number of zeroes appended, by the "generator polynomial" string except that exclusive or operations replace ...
The handbook was originally published in 1928 by the Chemical Rubber Company (now CRC Press) as a supplement (Mathematical Tables) to the CRC Handbook of Chemistry and Physics. Beginning with the 10th edition (1956), it was published as CRC Standard Mathematical Tables and kept this title up to the 29th edition (1991).
Usually, the second sum will be multiplied by 2 32 and added to the simple checksum, effectively stacking the sums side-by-side in a 64-bit word with the simple checksum at the least significant end. This algorithm is then called the Fletcher-64 checksum. The use of the modulus 2 32 − 1 = 4,294,967,295 is also generally implied. The rationale ...
For instance, in GF(5), 4 + 3 = 7 is reduced to 2 modulo 5. Division is multiplication by the inverse modulo p, which may be computed using the extended Euclidean algorithm. A particular case is GF(2), where addition is exclusive OR (XOR) and multiplication is AND. Since the only invertible element is 1, division is the identity function.
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]