enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    Mathematics of cyclic redundancy checks. The cyclic redundancy check (CRC) is a check of the remainder after division in the ring of polynomials over GF (2) (the finite field of integers modulo 2). That is, the set of polynomials where each coefficient is either zero or one, and arithmetic operations wrap around.

  3. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [1][2] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents. On retrieval, the calculation is repeated ...

  4. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    Computation of a cyclic redundancy check is derived from the mathematics of polynomial division, modulo two. In practice, it resembles long division of the binary message string, with a fixed number of zeroes appended, by the "generator polynomial" string except that exclusive or operations replace subtractions.

  5. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    Usually, the second sum will be multiplied by 2 32 and added to the simple checksum, effectively stacking the sums side-by-side in a 64-bit word with the simple checksum at the least significant end. This algorithm is then called the Fletcher-64 checksum. The use of the modulus 2 32 − 1 = 4,294,967,295 is also generally implied. The rationale ...

  6. Hash function - Wikipedia

    en.wikipedia.org/wiki/Hash_function

    The remainder using polynomial arithmetic modulo 2 is K(x) mod Z(x) = h m−1 x m−1 + ⋯ h 1 x + h 0. Then h ( K ) = ( h m −1 … h 1 h 0 ) 2 . If Z ( x ) is constructed to have t or fewer non-zero coefficients, then keys which share fewer than t bits are guaranteed to not collide.

  7. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...

  8. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    up to 2 bits of triplet omitted (cases not shown in table). Though simple to implement and widely used, this triple modular redundancy is a relatively inefficient ECC. Better ECC codes typically examine the last several tens or even the last several hundreds of previously received bits to determine how to decode the current small handful of ...

  9. Hamming (7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    As mentioned above, rows 1, 2, and 4 of G should look familiar as they map the data bits to their parity bits: p 1 covers d 1, d 2, d 4; p 2 covers d 1, d 3, d 4; p 3 covers d 2, d 3, d 4; The remaining rows (3, 5, 6, 7) map the data to their position in encoded form and there is only 1 in that row so it is an identical copy.