enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    The congruence relation is an equivalence relation. The equivalence class modulo m of an integer a is the set of all integers of the form a + k m, where k is any integer. It is called the congruence class or residue class of a modulo m, and may be denoted as (a mod m), or as a or [a] when the modulus m is known from the context.

  3. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  4. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    Congruence relation. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. [1]

  5. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.

  6. Quadratic residue - Wikipedia

    en.wikipedia.org/wiki/Quadratic_residue

    Modulo 2, every integer is a quadratic residue. Modulo an odd prime number p there are (p + 1)/2 residues (including 0) and (p − 1)/2 nonresidues, by Euler's criterion.In this case, it is customary to consider 0 as a special case and work within the multiplicative group of nonzero elements of the field (/).

  7. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    In number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime. Precisely, Let p be an odd prime and a be an integer coprime to p. Then [1][2][3] Euler's criterion can be concisely reformulated using the Legendre symbol: [4] The criterion dates from a 1748 paper by Leonhard Euler. [5][6]

  8. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    Euler's theorem. In number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem) states that, if n and a are coprime positive integers, then is congruent to modulo n, where denotes Euler's totient function; that is. In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat ...

  9. Arithmetic group - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_group

    A congruence subgroup is (roughly) a subgroup of an arithmetic group defined by taking all matrices satisfying certain equations modulo an integer, for example the group of 2 by 2 integer matrices with diagonal (respectively off-diagonal) coefficients congruent to 1 (respectively 0) modulo a positive integer. These are always finite-index ...