Search results
Results from the WOW.Com Content Network
Frequency-dependent selection may explain the high degree of polymorphism in the MHC. [12] In behavioral ecology, negative frequency-dependent selection often maintains multiple behavioral strategies within a species. A classic example is the Hawk-Dove model of interactions among individuals in a population.
r-selected species are those that emphasize high growth rates, typically exploit less-crowded ecological niches, and produce many offspring, each of which has a relatively low probability of surviving to adulthood (i.e., high r, low K). [10]
For example, there is vigorous resistance to the widespread assumptions that one can legitimately speak of genes ‘for’ specific phenotypic characters or that adaptation consists of evolution ‘shaping’ the more or less passive species, as opposed to adaptation consisting of organisms actively selecting, defining, shaping and often ...
Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology.Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure.
An example is provided by the analysis of trend in sea level by Woodworth (1987). Here the dependent variable (and variable of most interest) was the annual mean sea level at a given location for which a series of yearly values were available. The primary independent variable was time.
Fisher's principle is rooted in the concept of frequency-dependent selection, though Fisher's principle is not frequency-dependent selection per se. Frequency-dependent selection, in this scenario, is the logic that the probability of an individual being able to breed is dependent on the frequency of the opposite sex in relation to its own sex.
Fixation rates can easily be modeled as well to see how long it takes for a gene to become fixed with varying population sizes and generations. For example, The Biology Project Genetic Drift Simulation allows to model genetic drift and see how quickly the gene for worm color goes to fixation in terms of generations for different population sizes.
Coexistence theory attempts to explain the paradox of the plankton-- how can ecologically similar species coexist without competitively excluding each other?. Coexistence theory is a framework to understand how competitor traits can maintain species diversity and stave-off competitive exclusion even among similar species living in ecologically similar environments.