Search results
Results from the WOW.Com Content Network
Generally, the carbohydrate part(s) play an integral role in the function of a glycoconjugate; prominent examples of this are neural cell adhesion molecule (NCAM) and blood proteins where fine details in the carbohydrate structure determine cell binding (or not) or lifetime in circulation.
Fat has a food energy content of 38 kilojoules per gram (9 kilocalories per gram) proteins and carbohydrates 17 kJ/g (4 kcal/g). [ 2 ] Water makes up a large proportion of the total mass ingested as part of a normal diet but it does not provide any nutritional value.
Carbohydrates and proteins provide 17 kJ approximately (4 kcal) of energy per gram, while fats provide 37 kJ (9 kcal) per gram. [8] However, the net energy derived from the macronutrients depends on such factors as absorption and digestive effort, which vary substantially from instance to instance.
Protein combining or protein complementing is a dietary theory for protein nutrition that purports to optimize the biological value of protein intake. According to the theory, individual vegetarian and vegan foods may provide an insufficient amount of some essential amino acids, making protein combining with multiple complementary foods necessary to obtain a meal with "complete protein".
A glycoprotein is a compound containing carbohydrate (or glycan) covalently linked to protein. The carbohydrate may be in the form of a monosaccharide, disaccharide(s), oligosaccharide(s), polysaccharide(s), or their derivatives (e.g. sulfo- or phospho-substituted). One, a few, or many carbohydrate units may be present.
Compared to the study of protein–protein and protein–DNA interaction, it is relatively recent that scientists get to know the protein–carbohydrate binding. [1] Many of these interactions involved carbohydrates found at the cell surface, as part of a membrane glycoprotein or glycolipid. These interactions can play a role in cellular ...
Food consists of macromolecules of proteins, carbohydrates, and fats that need to be broken down chemically by digestive enzymes in the mouth, stomach, pancreas, and duodenum, before being able to be absorbed into the bloodstream. [1] Initial breakdown is achieved by chewing (mastication) and the use of digestive enzymes of saliva.
Modified amino acids are sometimes observed in proteins; this is usually the result of enzymatic modification after translation (protein synthesis). For example, phosphorylation of serine by kinases and dephosphorylation by phosphatases is an important control mechanism in the cell cycle. Only two amino acids other than the standard twenty are ...