Search results
Results from the WOW.Com Content Network
Then, the Heaviside step function Θ(x − x 0) is a Green's function of L at x 0. Let n = 2 and let the subset be the quarter-plane {(x, y) : x, y ≥ 0} and L be the Laplacian. Also, assume a Dirichlet boundary condition is imposed at x = 0 and a Neumann boundary condition is imposed at y = 0.
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in ). In one dimension, it is equivalent to the fundamental theorem of calculus.
Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
The solution of the Dirichlet problem using Sobolev spaces for planar domains can be used to prove the smooth version of the Riemann mapping theorem. Bell (1992) has outlined a different approach for establishing the smooth Riemann mapping theorem, based on the reproducing kernels of Szegő and Bergman, and in turn used it to solve the ...
The folium of Descartes (green) with asymptote (blue) when = In geometry , the folium of Descartes (from Latin folium ' leaf '; named for René Descartes ) is an algebraic curve defined by the implicit equation x 3 + y 3 − 3 a x y = 0. {\displaystyle x^{3}+y^{3}-3axy=0.}
In mathematical analysis, Schwarz's theorem (or Clairaut's theorem on equality of mixed partials) [9] named after Alexis Clairaut and Hermann Schwarz, states that for a function : defined on a set , if is a point such that some neighborhood of is contained in and has continuous second partial derivatives on that neighborhood of , then for all i ...
Intuitively, the Green measure of a Borel set H (with respect to a point x and domain D) is the expected length of time that X, having started at x, stays in H before it leaves the domain D. That is, the Green measure of X with respect to D at x, denoted G(x, ⋅), is defined for Borel sets H ⊆ R n by