Search results
Results from the WOW.Com Content Network
The lapse rate is the rate at which ... the lapse rate in the troposphere is reduced to ... inhibited radiative cooling as is the case for a positive greenhouse ...
The increase of air temperature at stratospheric altitudes results from the ozone layer's absorption and retention of the ultraviolet (UV) radiation that Earth receives from the Sun. [7] The coldest layer of the atmosphere, where the temperature lapse rate changes from a positive rate (in the troposphere) to a negative rate (in the stratosphere ...
Whether or not the atmosphere has stability depends partially on the moisture content. In a very dry troposphere, a temperature decrease with height less than 9.8 °C (17.6 °F) per kilometer ascent indicates stability, while greater changes indicate instability. This lapse rate is known as the dry adiabatic lapse rate. [3]
a lapse rate given per kilometer of geopotential altitude (A positive lapse rate (λ > 0) means temperature increases with height) In the above table, geopotential altitude is calculated from a mathematical model that adjusts the altitude to include the variation of gravity with height, while geometric altitude is the standard direct vertical ...
[6] [7] Therefore, the surface and troposphere are strongly coupled and must be considered as a unit. [6] This strong coupling is taken into account in the RCE with a "convective adjustment". This is done by adjusting the lapse rate to the moist adiabatic one (Γ = 6.5 K km -1) as soon as the layer becomes more unstable than this value. [6]
The tropopause is the boundary that demarcates the troposphere below from the stratosphere above, and is part of the atmosphere where there occurs an abrupt change in the environmental lapse rate (ELR) of temperature, from a positive rate (of decrease) in the troposphere to a negative rate in the stratosphere.
The atmosphere is warm at the surface and lower levels of the troposphere where there is mixing (the planetary boundary layer (PBL)), but becomes substantially cooler with height. The temperature profile of the atmosphere, the change in temperature, the degree that it cools with height, is the lapse rate.
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...