enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    However, even for a nonconvex QCQP problem a local solution can generally be found with a nonconvex variant of the interior point method. In some cases (such as when solving nonlinear programming problems with a sequential QCQP approach) these local solutions are sufficiently good to be accepted.

  3. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming is particularly simple when Q is positive definite and there are only equality constraints; specifically, the solution process is linear. By using Lagrange multipliers and seeking the extremum of the Lagrangian, it may be readily shown that the solution to the equality constrained problem

  4. How to Solve It - Wikipedia

    en.wikipedia.org/wiki/How_to_Solve_It

    First, you have to understand the problem. [2] After understanding, make a plan. [3] Carry out the plan. [4] Look back on your work. [5] How could it be better? If this technique fails, Pólya advises: [6] "If you cannot solve the proposed problem, try to solve first some related problem. Could you imagine a more accessible related problem?"

  5. Seven basic tools of quality - Wikipedia

    en.wikipedia.org/wiki/Seven_Basic_Tools_of_Quality

    The seven basic tools of quality are a fixed set of visual exercises identified as being most helpful in troubleshooting issues related to quality. [1] They are called basic because they are suitable for people with little formal training in statistics and because they can be used to solve the vast majority of quality-related issues.

  6. Linear complementarity problem - Wikipedia

    en.wikipedia.org/wiki/Linear_complementarity_problem

    A sufficient condition for existence and uniqueness of a solution to this problem is that M be symmetric positive-definite. If M is such that LCP(q, M) has a solution for every q, then M is a Q-matrix. If M is such that LCP(q, M) have a unique solution for every q, then M is a P-matrix. Both of these characterizations are sufficient and ...

  7. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    The power series method will give solutions only to initial value problems (opposed to boundary value problems), this is not an issue when dealing with linear equations since the solution may turn up multiple linearly independent solutions which may be combined (by superposition) to solve boundary value problems as well. A further restriction ...

  8. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.

  9. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    When the task is to find the solution that is the best under some criterion, this is an optimization problem. Solving an optimization problem is generally not referred to as "equation solving", as, generally, solving methods start from a particular solution for finding a better solution, and repeating the process until finding eventually the ...