enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phase-contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_microscopy

    The success of the phase-contrast microscope has led to a number of subsequent phase-imaging methods. In 1952, Georges Nomarski patented what is today known as differential interference contrast (DIC) microscopy. [8] It enhances contrast by creating artificial shadows, as if the object is illuminated from the side.

  3. Differential interference contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Differential_interference...

    Micrasterias furcata imaged in transmitted DIC microscopy Laser-induced optical damage in LiNbO 3 under 150× Nomarski microscopy. Differential interference contrast (DIC) microscopy, also known as Nomarski interference contrast (NIC) or Nomarski microscopy, is an optical microscopy technique used to enhance the contrast in unstained, transparent samples.

  4. Hoffman modulation contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Hoffman_modulation...

    Like differential interference contrast microscopy (DIC microscopy), contrast is increased by using components in the light path which convert phase gradients in the specimen into differences in light intensity that are rendered in an image that appears three-dimensional. The 3D appearance may be misleading, as a feature which appears to cast a ...

  5. Phase-contrast imaging - Wikipedia

    en.wikipedia.org/wiki/Phase-contrast_imaging

    The advantages of these methods compared to normal absorption-contrast X-ray imaging is higher contrast for low-absorbing materials (because phase shift is a different mechanism than absorption) and a contrast-to-noise relationship that increases with spatial frequency (because many phase-contrast techniques detect the first or second ...

  6. Fluorescence interference contrast microscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_interference...

    With the sample system built, all that is needed is an epifluorescence microscope and a CCD camera to make quantitative intensity measurements. This is a diagram of an example FLIC experimental setup with silicon, three oxide layers and a fluorescently labeled lipid bilayer (the yellow stars represent fluorophores.

  7. Contrast transfer function - Wikipedia

    en.wikipedia.org/wiki/Contrast_transfer_function

    The form of the contrast transfer function determines the quality of real space image formation in the TEM. CTF Function prepared via web applet created by Jiang and Chiu, available at https://ctfsimulation.streamlit.app/ This is an example contrast transfer function. There are a number of things to note:

  8. Interference reflection microscopy - Wikipedia

    en.wikipedia.org/wiki/Interference_reflection...

    Interference reflection microscopy (IRM), also called Reflection Interference Contrast Microscopy (RICM) or Reflection Contrast Microscopy (RCM) depending on the specific optical elements used, is an optical microscopy technique that leverages thin-film interference effects to form an image of an object on a glass surface.

  9. Transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Transmission_electron...

    The contrast between two adjacent areas in a TEM image can be defined as the difference in the electron densities in image plane. Due to the scattering of the incident beam by the sample, the amplitude and phase of the electron wave change, which results in amplitude contrast and phase contrast, correspondingly. Most images have both contrast ...