Search results
Results from the WOW.Com Content Network
Fuller was continually on the lookout for ways to connect the dots, often purely speculatively. As an example of "dot connecting" he sought to relate the 120 basic disequilibrium LCD triangles of the spherical icosahedron to the plane net of his A module.(915.11Fig. 913.01, Table 905.65)
Time crystals: A state of matter where an object can have movement even at its lowest energy state. Hidden states of matter: Phases that are unattainable or do not exist in thermal equilibrium, but can be induced e.g. by photoexcitation. Microphase separation: Constituent units forming diverse phases while also keeping united.
Buckminster Fuller found that the cuboctahedron is the only polyhedron in which the distance between its center to the vertex is the same as the distance between its edges. In other words, it has the same length vectors in three-dimensional space, known as vector equilibrium . [ 8 ]
Mesons named with the letter "f" are scalar mesons (as opposed to a pseudo-scalar meson), and mesons named with the letter "a" are axial-vector mesons (as opposed to an ordinary vector meson) a.k.a. an isoscalar vector meson, while the letters "b" and "h" refer to axial-vector mesons with positive parity, negative C-parity, and quantum numbers I G of 1 + and 0 − respectively.
Mechanical equilibrium, the state in which the sum of the forces, and torque, on each particle of the system is zero; Radiative equilibrium, the state where the energy radiated is balanced by the energy absorbed; Secular equilibrium, a state of radioactive elements in which the production rate of a daughter nucleus is balanced by its own decay rate
The master equation exhibits detailed balance if each of the terms of the summation disappears separately at equilibrium—i.e. if, for all states k and ℓ having equilibrium probabilities and , =. These symmetry relations were proved on the basis of the time reversibility of microscopic dynamics ( microscopic reversibility ) as Onsager ...
The path or series of states through which a system passes from an initial equilibrium state to a final equilibrium state [1] and can be viewed graphically on a pressure-volume (P-V), pressure-temperature (P-T), and temperature-entropy (T-s) diagrams. [2] There are an infinite number of possible paths from an initial point to an end point in a ...
Forms of matter that are not composed of molecules and are organized by different forces can also be considered different states of matter. Superfluids (like Fermionic condensate) and the quark–gluon plasma are examples. In a chemical equation, the state of matter of the chemicals may be shown as (s) for solid, (l) for liquid, and (g) for gas.