Search results
Results from the WOW.Com Content Network
In an electrical network, ω is a natural angular frequency of a response function f(t) if the Laplace transform F(s) of f(t) includes the term Ke −st, where s = σ + ωi for a real σ, and K ≠ 0 is a constant. [2] Natural frequencies depend on network topology and element values but not their input. [3]
A series of mixed vertical oscillators A plot of the peak acceleration for the mixed vertical oscillators. A response spectrum is a plot of the peak or steady-state response (displacement, velocity or acceleration) of a series of oscillators of varying natural frequency, that are forced into motion by the same base vibration or shock.
"Simple gravity pendulum" model assumes no friction or air resistance. A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. [1] When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the equilibrium position.
In physics and mathematics, in the area of dynamical systems, an elastic pendulum [1] [2] (also called spring pendulum [3] [4] or swinging spring) is a physical system where a piece of mass is connected to a spring so that the resulting motion contains elements of both a simple pendulum and a one-dimensional spring-mass system. [2]
Vibration (from Latin vibrāre 'to shake') is a mechanical phenomenon whereby oscillations occur about an equilibrium point.Vibration may be deterministic if the oscillations can be characterised precisely (e.g. the periodic motion of a pendulum), or random if the oscillations can only be analysed statistically (e.g. the movement of a tire on a gravel road).
The Rayleigh's quotient represents a quick method to estimate the natural frequency of a multi-degree-of-freedom vibration system, in which the mass and the stiffness matrices are known.
A second-order Butterworth filter (i.e., continuous-time filter with the flattest passband frequency response) has an underdamped Q = 1 / √ 2 . [11] A pendulum's Q-factor is: Q = Mω/Γ, where M is the mass of the bob, ω = 2π/T is the pendulum's radian frequency of oscillation, and Γ is the frictional damping force on the pendulum ...
In order to calculate the internal energy and the specific heat, we must know the number of normal vibrational modes a frequency between the values ν and ν + dν. Allow this number to be f(ν)dν. Since the total number of normal modes is 3N, the function f(ν) is given by: =