Search results
Results from the WOW.Com Content Network
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."
Data analysis focuses on the process of examining past data through business understanding, data understanding, data preparation, modeling and evaluation, and deployment. [8] It is a subset of data analytics, which takes multiple data analysis processes to focus on why an event happened and what may happen in the future based on the previous data.
These techniques facilitate useful data interpretations and can help to get better insights into the processes behind the data. Although the traditional data analysis techniques can indirectly lead us to knowledge, it is still created by human analysts. [7] To go beyond, a data analysis system has to be equipped with a substantial amount of ...
Data analysis techniques are required to make effective and efficient use of the data. Palshikar classifies data analysis techniques into two categories – (statistical models, time-series analysis, clustering and classification, matching algorithms to detect anomalies) and artificial intelligence (AI) techniques (data mining, expert systems ...
Data science is "a concept to unify statistics, data analysis, informatics, and their related methods" to "understand and analyze actual phenomena" with data. [5] It uses techniques and theories drawn from many fields within the context of mathematics , statistics, computer science , information science , and domain knowledge . [ 6 ]
Centered moving average methods utilize the data found in the single moving average methods by taking an average of the median-numbered data set. However, as the median-numbered data set is difficult to calculate with even-numbered data sets, this method works better with odd-numbered data sets than even. [13]
Data profiling utilizes methods of descriptive statistics such as minimum, maximum, mean, mode, percentile, standard deviation, frequency, variation, aggregates such as count and sum, and additional metadata information obtained during data profiling such as data type, length, discrete values, uniqueness, occurrence of null values, typical string patterns, and abstract type recognition.