Search results
Results from the WOW.Com Content Network
Quantile regression is a type of regression analysis used in statistics and econometrics. Whereas the method of least squares estimates the conditional mean of the response variable across values of the predictor variables, quantile regression estimates the conditional median (or other quantiles) of the response variable.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".
Visualization of the Quantile Regression Averaging (QRA) probabilistic forecasting technique. The quantile regression problem can be written as follows: (|) =, where (|) is the conditional q-th quantile of the dependent variable (), = [, ^,,..., ^,] is a vector of point forecasts of individual models (i.e. independent variables) and β q is a vector of parameters (for quantile q).
The scikit-learn project started as scikits.learn, a Google Summer of Code project by David Cournapeau. After having worked for Silveregg, a SaaS Japanese company delivering recommendation systems for Japanese online retailers, [3] he worked for 6 years at Enthought, a scientific consulting company.
4 Regression. 5 Time series analysis. ... scikit-learn: David Cournapeau, Inria: 1.2.0 ... Quantile Probit Cox Poisson MLR; ADaMSoft: Yes Yes No Yes
Linear quantile regression models a particular conditional quantile, for example the conditional median, as a linear function β T x of the predictors. Mixed models are widely used to analyze linear regression relationships involving dependent data when the dependencies have a known structure. Common applications of mixed models include ...
Random regression forest has two levels of averaging, first over the samples in the target cell of a tree, then over all trees. Thus the contributions of observations that are in cells with a high density of data points are smaller than that of observations which belong to less populated cells.