enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Timeline of manifolds - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_manifolds

    Manifolds in contemporary mathematics come in a number of types. These include: smooth manifolds, which are basic in calculus in several variables, mathematical analysis and differential geometry; piecewise-linear manifolds; topological manifolds. There are also related classes, such as homology manifolds and orbifolds, that resemble manifolds.

  3. Gauss–Codazzi equations - Wikipedia

    en.wikipedia.org/wiki/Gauss–Codazzi_equations

    In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.

  4. Classification of manifolds - Wikipedia

    en.wikipedia.org/wiki/Classification_of_manifolds

    There are two usual ways to give a classification: explicitly, by an enumeration, or implicitly, in terms of invariants. For instance, for orientable surfaces, the classification of surfaces enumerates them as the connected sum of tori, and an invariant that classifies them is the genus or Euler characteristic.

  5. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    Riemannian geometry, the study of Riemannian manifolds, has deep connections to other areas of math, including geometric topology, complex geometry, and algebraic geometry. Applications include physics (especially general relativity and gauge theory ), computer graphics , machine learning , and cartography .

  6. G-structure on a manifold - Wikipedia

    en.wikipedia.org/wiki/G-structure_on_a_manifold

    In differential geometry, a G-structure on an n-manifold M, for a given structure group [1] G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M.. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields.

  7. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    Spivak, Michael (1999) A Comprehensive Introduction to Differential Geometry (3rd edition) Publish or Perish Inc. Encyclopedic five-volume series presenting a systematic treatment of the theory of manifolds, Riemannian geometry, classical differential geometry, and numerous other topics at the first- and second-year graduate levels.

  8. Category:Structures on manifolds - Wikipedia

    en.wikipedia.org/wiki/Category:Structures_on...

    There are three main types of structures important on manifolds. The foundational geometric structures are piecewise linear, mostly studied in geometric topology, and smooth manifold structures on a given topological manifold, which are the concern of differential topology as far as classification goes. Building on a smooth structure, there are:

  9. Riemannian submersion - Wikipedia

    en.wikipedia.org/wiki/Riemannian_submersion

    An example of a Riemannian submersion arises when a Lie group acts isometrically, freely and properly on a Riemannian manifold (,). The projection π : M → N {\displaystyle \pi :M\rightarrow N} to the quotient space N = M / G {\displaystyle N=M/G} equipped with the quotient metric is a Riemannian submersion.