Search results
Results from the WOW.Com Content Network
Some ECC-enabled boards and processors are able to support unbuffered (unregistered) ECC, but will also work with non-ECC memory; system firmware enables ECC functionality if ECC memory is installed. ECC may lower memory performance by around 2–3 percent on some systems, depending on the application and implementation, due to the additional ...
Two types of DIMMs: a 168-pin SDRAM module (top) and a 184-pin DDR SDRAM module (bottom). The SDRAM module has two notches (rectangular cuts or incisions) on the bottom edge, while the DDR1 SDRAM module has one. Also, each module has eight RAM chips, but the lower one has an unoccupied space for the ninth chip; this space is occupied in ECC DIMMs.
For example, 64 would indicate a 64-bit data width, as is found on non-ECC DIMMs common in SDR and DDR1–4 families of RAM. A memory of width of 72 would indicate an ECC module, with 8 extra bits in the data width for the error-correcting code syndrome. (The ECC syndrome allows single-bit errors to be corrected).
In other words, LR-DIMMs buffer both control and data lines while keeping the parallel nature of all signals. As a result, LR-DIMMs provide large overall maximum memory capacities, while avoiding the performance and power consumption problems of FB-DIMMs, induced by the required conversion between serial and parallel signal forms. [7] [9
The number of physical DRAMs depends on their individual widths. For example, a rank of ×8 (8-bit wide) DRAMs would consist of eight physical chips (nine if ECC is supported), but a rank of ×4 (4-bit wide) DRAMs would consist of 16 physical chips (18, if ECC is supported). Multiple ranks can coexist on a single DIMM.
Earlier DIMM generations featured only a single channel and one CA (Command/Address) bus controlling the whole memory module with its 64 (for non-ECC) or 72 (for ECC) data lines. Both subchannels on a DDR5 DIMM each have their own CA bus, controlling 32 bits for non-ECC memory and either 36 or 40 data lines for ECC memory, resulting in a total ...
In computing, serial presence detect (SPD) is a standardized way to automatically access information about a memory module.Earlier 72-pin SIMMs included five pins that provided five bits of parallel presence detect (PPD) data, but the 168-pin DIMM standard changed to a serial presence detect to encode more information.
An equivalent system from Sun Microsystems is called Extended ECC, while equivalent systems from HP are called Advanced ECC [3] and Chipspare. A similar system from Intel, called Lockstep memory, provides double-device data correction (DDDC) functionality. [4]