enow.com Web Search

  1. Ad

    related to: add subtract multiply and divide complex numbers on youtube

Search results

  1. Results from the WOW.Com Content Network
  2. Mechanical computer - Wikipedia

    en.wikipedia.org/wiki/Mechanical_computer

    Pascaline, 1642 – Blaise Pascal's arithmetic machine primarily intended as an adding machine which could add and subtract two numbers directly, as well as multiply and divide by repetition. Stepped Reckoner, 1672 – Gottfried Wilhelm Leibniz's mechanical calculator that could add, subtract, multiply, and divide.

  3. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    The sequence of numbers involved is sometimes referred to as the hailstone sequence, hailstone numbers or hailstone numerals (because the values are usually subject to multiple descents and ascents like hailstones in a cloud), [5] or as wondrous numbers. [6] Paul Erdős said about the Collatz conjecture: "Mathematics may not be ready for such ...

  4. Frobenius theorem (real division algebras) - Wikipedia

    en.wikipedia.org/wiki/Frobenius_theorem_(real...

    In mathematics, more specifically in abstract algebra, the Frobenius theorem, proved by Ferdinand Georg Frobenius in 1877, characterizes the finite-dimensional associative division algebras over the real numbers. According to the theorem, every such algebra is isomorphic to one of the following: R (the real numbers) C (the complex numbers) H ...

  5. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Divide the highest term of the remainder by the highest term of the divisor (x 2 ÷ x = x). Place the result (+x) below the bar. x 2 has been divided leaving no remainder, and can therefore be marked as used. The result x is then multiplied by the second term in the divisor −3 = −3x. Determine the partial remainder by subtracting 0x − ...

  6. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The basic principle of Karatsuba's algorithm is divide-and-conquer, using a formula that allows one to compute the product of two large numbers and using three multiplications of smaller numbers, each with about half as many digits as or , plus some additions and digit shifts.

  7. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.

  8. Multiplication and repeated addition - Wikipedia

    en.wikipedia.org/wiki/Multiplication_and...

    Multiplication is often defined for natural numbers, then extended to whole numbers, fractions, and irrational numbers. However, abstract algebra has a more general definition of multiplication as a binary operation on some objects that may or may not be numbers. Notably, one can multiply complex numbers, vectors, matrices, and quaternions.

  9. Scott Flansburg - Wikipedia

    en.wikipedia.org/wiki/Scott_Flansburg

    Flansburg can mentally add, subtract, multiply, divide, and find square and cube roots almost instantly, with calculator accuracy. Around 1990 he began using his abilities in an entertainment and educational context.

  1. Ad

    related to: add subtract multiply and divide complex numbers on youtube