Search results
Results from the WOW.Com Content Network
To compute the sine function of 75 degrees, 9 minutes, 50 seconds using a table of trigonometric functions such as the Bernegger table from 1619 illustrated above, one might simply round up to 75 degrees, 10 minutes and then find the 10 minute entry on the 75 degree page, shown above-right, which is 0.9666746.
[9] [failed verification] Each degree was subdivided into 60 minutes and each minute into 60 seconds. [10] [11] Thus, one Babylonian degree was equal to four minutes in modern terminology, one Babylonian minute to four modern seconds, and one Babylonian second to 1 / 15 (approximately 0.067) of a modern second.
The HP-65 was one of the first calculators to include a base conversion function, although it only supported octal (base 8) conversion. It could also perform conversions between degrees/minutes/seconds (sexagesimal) and decimal degree (sexadecimal) values, as well as polar/cartesian coordinate conversion.
In mathematics, the values of the trigonometric functions can be expressed approximately, as in (/), or exactly, as in (/) = /.While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots.
Āryabhaṭa has chosen the number 3438 as the value of radius of the base circle for the computation of his sine table. The rationale of the choice of this parameter is the idea of measuring the circumference of a circle in angle measures. In astronomical computations distances are measured in degrees, minutes, seconds, etc. In this measure ...
The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...
For example, the cosine and sine of 2π ⋅ 5/37 are the real and imaginary parts, respectively, of the 5th power of the 37th root of unity cos(2π/37) + sin(2π/37)i, which is a root of the degree-37 polynomial x 37 − 1.
One hour of time is divided into 60 minutes, and one minute is divided into 60 seconds. Thus, a measurement of time such as 3:23:17 (3 hours, 23 minutes, and 17 seconds) can be interpreted as a whole sexagesimal number (no sexagesimal point), meaning 3 × 60 2 + 23 × 60 1 + 17 × 60 0 seconds.