enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    In this diagram, protons and neutrons look like little balls stuck together, but an actual nucleus (as understood by modern nuclear physics) cannot be explained like this, but only by using quantum mechanics. In a nucleus that occupies a certain energy level (for example, the ground state), each nucleon can be said to occupy a range of locations.

  3. Shape of the atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_atomic_nucleus

    Electron scattering techniques have yielded clues as to the internal structure of light nuclides. Proton-neutron pairs experience a strongly repulsive component of the nuclear force within ≈ 0.5 fm (see "Space between nucleons" above). As nucleons cannot pack any closer, nearly all nuclei have the same central density. [6]

  4. Proton - Wikipedia

    en.wikipedia.org/wiki/Proton

    A proton is a stable subatomic particle, symbol p, H +, or 1 H + with a positive electric charge of +1 e (elementary charge).Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio).

  5. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    Beta decay (and electron capture): these processes are regulated by the weak force, and result from a transformation of a neutron into a proton, or a proton into a neutron. The neutron to proton transition is accompanied by the emission of an electron and an antineutrino, while proton to neutron transition (except in electron capture) causes ...

  6. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The mass of the neutron is greater than that of the proton by 1.293 32 MeV/c 2, [25] hence the neutron's mass provides energy sufficient for the creation of the proton, electron, and anti-neutrino. In the decay process, the proton, electron, and electron anti-neutrino conserve the energy, charge, and lepton number of the neutron. [26]

  7. Nuclear shell model - Wikipedia

    en.wikipedia.org/wiki/Nuclear_shell_model

    8 O as an example: Its nucleus has eight protons filling the first three proton "shells", eight neutrons filling the first three neutron "shells", and one extra neutron. All protons in a complete proton shell have zero total angular momentum, since their angular momenta cancel each other. The same is true for neutrons.

  8. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    Isotope half-lives. The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes largerIsotopes are nuclides with the same number of protons but differing numbers of neutrons; that is, they have the same atomic number and are therefore the same chemical element.

  9. List of Feynman diagrams - Wikipedia

    en.wikipedia.org/wiki/List_of_Feynman_diagrams

    Diagram Beta decay: beta particle is emitted from an atomic nucleus Compton scattering: scattering of a photon by a charged particle Neutrino-less double beta decay: If neutrinos are Majorana fermions (that is, their own antiparticle), Neutrino-less double beta decay is possible. Several experiments are searching for this. Pair production and ...