Search results
Results from the WOW.Com Content Network
Download QR code; Print/export ... L-stability is a special case of A-stability, ... is the stability function of the method ...
The quadratic function () = is a Lyapunov function that can be used to verify stability. Theorem (discrete time version). Given any Q > 0 {\displaystyle Q>0} , there exists a unique P > 0 {\displaystyle P>0} satisfying A T P A − P + Q = 0 {\displaystyle A^{T}PA-P+Q=0} if and only if the linear system x t + 1 = A x t {\displaystyle x_{t+1}=Ax ...
In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form / =, where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part.
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).
Comparison functions are primarily used to obtain quantitative restatements of stability properties as Lyapunov stability, uniform asymptotic stability, etc. These restatements are often more useful than the qualitative definitions of stability properties given in ε - δ {\displaystyle \varepsilon {\text{-}}\delta } language.
Lyapunov functions are used extensively in control theory to ensure different forms of system stability. The state of a system at a particular time is often described by a multi-dimensional vector. A Lyapunov function is a nonnegative scalar measure of this multi-dimensional state.
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...
In certain cases, von Neumann stability is necessary and sufficient for stability in the sense of Lax–Richtmyer (as used in the Lax equivalence theorem): The PDE and the finite difference scheme models are linear; the PDE is constant-coefficient with periodic boundary conditions and has only two independent variables; and the scheme uses no ...