enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The matrices L and U could be thought to have "encoded" the Gaussian elimination process. The cost of solving a system of linear equations is approximately 2 3 n 3 {\textstyle {\frac {2}{3}}n^{3}} floating-point operations if the matrix A {\textstyle A} has size n {\textstyle n} .

  4. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    In other situations, the system of equations may be block tridiagonal (see block matrix), with smaller submatrices arranged as the individual elements in the above matrix system (e.g., the 2D Poisson problem). Simplified forms of Gaussian elimination have been developed for these situations. [6]

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination. If Gaussian elimination produces the row echelon form without requiring any row interchanges, then P = I, so an LU decomposition exists.

  6. Iterative refinement - Wikipedia

    en.wikipedia.org/wiki/Iterative_refinement

    As a rule of thumb, iterative refinement for Gaussian elimination produces a solution correct to working precision if double the working precision is used in the computation of r, e.g. by using quad or double extended precision IEEE 754 floating point, and if A is not too ill-conditioned (and the iteration and the rate of convergence are ...

  7. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.

  8. Underdetermined system - Wikipedia

    en.wikipedia.org/wiki/Underdetermined_system

    There are algorithms to decide whether an underdetermined system has solutions, and if it has any, to express all solutions as linear functions of k of the variables (same k as above). The simplest one is Gaussian elimination. See System of linear equations for more details.

  9. Gaussian algorithm - Wikipedia

    en.wikipedia.org/wiki/Gaussian_algorithm

    Gaussian algorithm may refer to: Gaussian elimination for solving systems of linear equations; Gauss's algorithm for Determination of the day of the week; Gauss's method for preliminary orbit determination; Gauss's Easter algorithm; Gauss separation algorithm