Search results
Results from the WOW.Com Content Network
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].
The matrices L and U could be thought to have "encoded" the Gaussian elimination process. The cost of solving a system of linear equations is approximately 2 3 n 3 {\textstyle {\frac {2}{3}}n^{3}} floating-point operations if the matrix A {\textstyle A} has size n {\textstyle n} .
In other situations, the system of equations may be block tridiagonal (see block matrix), with smaller submatrices arranged as the individual elements in the above matrix system (e.g., the 2D Poisson problem). Simplified forms of Gaussian elimination have been developed for these situations. [6]
These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination. If Gaussian elimination produces the row echelon form without requiring any row interchanges, then P = I, so an LU decomposition exists.
As a rule of thumb, iterative refinement for Gaussian elimination produces a solution correct to working precision if double the working precision is used in the computation of r, e.g. by using quad or double extended precision IEEE 754 floating point, and if A is not too ill-conditioned (and the iteration and the rate of convergence are ...
The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it. The variant of Gaussian elimination that transforms a matrix to reduced row echelon form is sometimes called Gauss–Jordan elimination. A matrix is in column echelon form if its transpose is in row echelon form.
There are algorithms to decide whether an underdetermined system has solutions, and if it has any, to express all solutions as linear functions of k of the variables (same k as above). The simplest one is Gaussian elimination. See System of linear equations for more details.
Gaussian algorithm may refer to: Gaussian elimination for solving systems of linear equations; Gauss's algorithm for Determination of the day of the week; Gauss's method for preliminary orbit determination; Gauss's Easter algorithm; Gauss separation algorithm