enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    The Russian-Soviet mathematician and mechanician Nikolay Gur'yevich Chetaev working at the Kazan Aviation Institute in the 1930s was the first who realized the incredible magnitude of the discovery made by A. M. Lyapunov. The contribution to the theory made by N. G. Chetaev [2] was so significant that many mathematicians, physicists and ...

  3. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory.

  4. Aleksandr Lyapunov - Wikipedia

    en.wikipedia.org/wiki/Aleksandr_Lyapunov

    Lyapunov contributed to several fields, including differential equations, potential theory, dynamical systems and probability theory. His main preoccupations were the stability of equilibria and the motion of mechanical systems, especially rotating fluid masses, and the study of particles under the influence of gravity.

  5. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [ 1 ] [ 2 ] In particular, the discrete-time Lyapunov equation (also known as Stein equation ) for X {\displaystyle X} is

  6. Control-Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Control-Lyapunov_function

    The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.

  7. Lyapunov theorem - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_theorem

    Lyapunov theory, a theorem related to the stability of solutions of differential equations near a point of equilibrium; Lyapunov central limit theorem, variant of the central limit theorem; Lyapunov vector-measure theorem, theorem in measure theory that the range of any real-valued, non-atomic vector measure is compact and convex

  8. Lyapunov–Malkin theorem - Wikipedia

    en.wikipedia.org/wiki/Lyapunov–Malkin_theorem

    The Lyapunov–Malkin theorem (named for Aleksandr Lyapunov and Ioel Malkin ) is a mathematical theorem detailing stability of nonlinear systems. [ 1 ] [ 2 ] Theorem

  9. Input-to-state stability - Wikipedia

    en.wikipedia.org/wiki/Input-to-state_stability

    Input-to-state stability of the systems based on time-invariant ordinary differential equations is a quite developed theory, see a recent monograph. [6] However, ISS theory of other classes of systems is also being investigated for time-variant ODE systems [20] and hybrid systems.