Search results
Results from the WOW.Com Content Network
In physics, Wien's displacement law states that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature. The shift of that peak is a direct consequence of the Planck radiation law , which describes the spectral brightness or intensity of black-body radiation ...
Stefan–Boltzmann law: Surface temperature of any objects radiate energy and shows specific properties. These properties are calculated by Boltzmann law. 2. Wien's displacement law: Wien's displacement law explains the relation between temperature and the wavelength of radiation. It states that the wavelength of radiation emitted from a ...
Comparison of Wien’s curve and the Planck curve. Wien's approximation (also sometimes called Wien's law or the Wien distribution law) is a law of physics used to describe the spectrum of thermal radiation (frequently called the blackbody function). This law was first derived by Wilhelm Wien in 1896.
A consequence of Wien's displacement law is that the wavelength at which the intensity per unit wavelength of the radiation produced by a black body has a local maximum or peak, , is a function only of the temperature: =, where the constant b, known as Wien's displacement constant, is equal to + 2.897 771 955 × 10 −3 m K. [31]
Wien's displacement law, and the fact that the frequency is inversely proportional to the wavelength, indicates that the peak frequency f max is proportional to the absolute temperature T of the black body. The photosphere of the sun, at a temperature of approximately 6000 K, emits radiation principally in the (human-)visible portion of the ...
Wien's law or Wien law may refer to: . Wien approximation, an equation used to describe the short-wavelength (high frequency) spectrum of thermal radiation; Wien's displacement law, an equation that describes the relationship between the temperature of an object and the peak wavelength or frequency of the emitted light
Displacement field (mechanics), an assignment of displacement vectors for all points in a body that is displaced from one state to another; Electric displacement field, as appears in Maxwell's equations; Wien's displacement law, a relation concerning the spectral distribution of blackbody radiation
Objects within a temperature range of approximately 5 K to 340 K emit radiation in the far infrared range as a result of black-body radiation, in accordance with Wien's displacement law. This characteristic is utilized in the observation of interstellar gases, which are frequently associated with the formation of new stars.