Search results
Results from the WOW.Com Content Network
An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that arithmetic progression.
If n is a small fixed number, then an exhaustive search for the solution is practical. L - the precision of the problem, stated as the number of binary place values that it takes to state the problem. If L is a small fixed number, then there are dynamic programming algorithms that can solve it exactly. As both n and L grow large, SSP is NP-hard.
The following table shows known ... the values in Sylvester's sequence would solve the problem; with that requirement, it has other solutions derived from recurrences ...
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.
A near-isosceles Pythagorean triple is an integer solution to a 2 + b 2 = c 2 where a + 1 = b. The next table shows that splitting the odd number H n into nearly equal halves gives a square triangular number when n is even and a near isosceles Pythagorean triple when n is odd. All solutions arise in this manner.
The elements of an arithmetico-geometric sequence () are the products of the elements of an arithmetic progression (in blue) with initial value and common difference , = + (), with the corresponding elements of a geometric progression (in green) with initial value and common ratio , =, so that [4]
The first player (or team) to complete two sequences of five chips in a row successfully, whether vertically, horizontally, or diagonally, wins the game of Sequence. A note about special cards
The method for solving these equations is known as Diophantine analysis. Most of the Arithmetica problems lead to quadratic equations. In Book 3, Diophantus solves problems of finding values which make two linear expressions simultaneously into squares or cubes. In book 4, he finds rational powers between given numbers.