Search results
Results from the WOW.Com Content Network
Intrapleural pressure is different from intrathoracic pressure. The thoracic cavity is the space that includes the pleura, lungs, and heart, while the pleural space is only the space between the parietal pleura and visceral pleura surrounding lungs. Intrapleural pressure depends on the ventilation phase, atmospheric pressure, and the volume of ...
Dynamic compression of the airways results when intrapleural pressure equals or exceeds alveolar pressure, which causes dynamic collapsing of the lung airways. It is termed dynamic given the transpulmonary pressure (alveolar pressure − intrapleural pressure) varies based on factors including lung volume, compliance, resistance, existing pathologies, etc. [1]
The alveolar pressure is estimated by measuring the pressure in the airways while holding one's breath. [2] The intrapleural pressure is estimated by measuring the pressure inside a balloon placed in the esophagus. [2] Measurement of transpulmonary pressure assists in spirometry in availing for calculation of static lung compliance.
The pleural cavity, or pleural space (or sometimes intrapleural space), is the potential space between the pleurae of the pleural sac that surrounds each lung. A small amount of serous pleural fluid is maintained in the pleural cavity to enable lubrication between the membranes, and also to create a pressure gradient. [1]
Objective data measurement: discrepancies in evaluation of the clinical course are significantly lower when using an electronic system compared to classical systems. [ 4 ] [ 5 ] Double lumen tubing : allows for a separation of fluid and air, sub-atmospheric pressure is measured via the thinner of the two tubes.
Lung compliance, or pulmonary compliance, is a measure of the lung's ability to stretch and expand (distensibility of elastic tissue). In clinical practice it is separated into two different measurements, static compliance and dynamic compliance. Static lung compliance is the change in volume for any given applied pressure. [1]
Towards the base of the lungs, the fluid volume in the pleural cavity increases due to gravity, resulting in greater intrapleural pressure. As a result, alveoli expand less and become more compliant at the base, improving ventilation. Perfusion also increases as gravity pulls down the blood towards the base.
Once air enters the pleural cavity, the intrapleural pressure increases, resulting in the difference between the intrapulmonary pressure and the intrapleural pressure (defined as the transpulmonary pressure) to equal zero, which cause the lungs to deflate in contrast to a normal transpulmonary pressure of ~4 mm Hg. [28]