Search results
Results from the WOW.Com Content Network
Let's first imagine a cube with sides of length 2, and its center at the axis origin, which means all its faces intersect the axes at a distance of 1 from the origin. We can calculate the length of the line from its center to the middle of any edge as √ 2 using Pythagoras' theorem .
To derive the equation of the Mohr circle for the two-dimensional cases of plane stress and plane strain, first consider a two-dimensional infinitesimal material element around a material point (Figure 4), with a unit area in the direction parallel to the -plane, i.e., perpendicular to the page or screen.
where c ∈ ℝ n is the center of the circle (irrelevant since it disappears in the derivatives), a,b ∈ ℝ n are perpendicular vectors of length ρ (that is, a · a = b · b = ρ 2 and a · b = 0), and h : ℝ → ℝ is an arbitrary function which is twice differentiable at t. The relevant derivatives of g work out to be
3D projections use the primary qualities of an object's basic shape to create a map of points, that are then connected to one another to create a visual element. The result is a graphic that contains conceptual properties to interpret the figure or image as not actually flat (2D), but rather, as a solid object (3D) being viewed on a 2D display.
SolidWorks (stylized as SOLIDWORKS) is a brand within Dassault Systèmes that develops and markets software for solid modeling computer-aided design (CAD), computer-aided engineering (CAE), 3D CAD design, collaboration, analysis, and product data management. [2] The company introduced one of the first 3D CAD applications designed to run on a ...
Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.
The plane z = 0 runs through the center of the sphere; the "equator" is the intersection of the sphere with this plane. For any point P on M , there is a unique line through N and P , and this line intersects the plane z = 0 in exactly one point P ′ , known as the stereographic projection of P onto the plane.
Any cross-section passing through the center of an ellipsoid forms an elliptic region, while the corresponding plane sections are ellipses on its surface. These degenerate to disks and circles, respectively, when the cutting planes are perpendicular to a symmetry axis. In more generality, the plane sections of a quadric are conic sections. [5]