Search results
Results from the WOW.Com Content Network
Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.
It allows for the efficient computation of gradients through random variables, enabling the optimization of parametric probability models using stochastic gradient descent, and the variance reduction of estimators. It was developed in the 1980s in operations research, under the name of "pathwise gradients", or "stochastic gradients".
Stochastic gradient descent; Backpropagation; ... As noted above, gradient descent tells us that our change for each weight should be proportional to the gradient.
This technique is used in stochastic gradient descent and as an extension to the backpropagation algorithms used to train artificial neural networks. [29] [30] In the direction of updating, stochastic gradient descent adds a stochastic property. The weights can be used to calculate the derivatives.
When the objective function is differentiable, sub-gradient methods for unconstrained problems use the same search direction as the method of steepest descent. Subgradient methods are slower than Newton's method when applied to minimize twice continuously differentiable convex functions.
SGLD can be applied to the optimization of non-convex objective functions, shown here to be a sum of Gaussians. Stochastic gradient Langevin dynamics (SGLD) is an optimization and sampling technique composed of characteristics from Stochastic gradient descent, a Robbins–Monro optimization algorithm, and Langevin dynamics, a mathematical extension of molecular dynamics models.
steepest descent (with variable learning rate and momentum, resilient backpropagation); quasi-Newton (Broyden–Fletcher–Goldfarb–Shanno, one step secant); Levenberg–Marquardt and conjugate gradient (Fletcher–Reeves update, Polak–Ribiére update, Powell–Beale restart, scaled conjugate gradient). [4]
(Stochastic) variance reduction is an algorithmic approach to minimizing functions that can be decomposed into finite sums. By exploiting the finite sum structure, variance reduction techniques are able to achieve convergence rates that are impossible to achieve with methods that treat the objective as an infinite sum, as in the classical Stochastic approximation setting.