Search results
Results from the WOW.Com Content Network
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
In radio frequency (RF) practice this is often measured in a dimensionless ratio known as voltage standing wave ratio (VSWR) with a VSWR bridge. The ratio of energy bounced back depends on the impedance mismatch. Mathematically, it is defined using the reflection coefficient. [2]
— A web application that draws the Standing Wave Diagram and calculates the SWR, input impedance, reflection coefficient and more "Reflection and VSWR". fourier-series.com. RF concepts. — A flash demonstration of transmission line reflection and SWR "VSWR". telestrian.co.uk. — An online conversion tool between SWR, return loss and ...
A time-domain reflectometer; an instrument used to locate the position of faults on lines from the time taken for a reflected wave to return from the discontinuity.. A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if ...
Return loss is related to both standing wave ratio (SWR) and reflection coefficient (Γ). Increasing return loss corresponds to lower SWR. Return loss is a measure of how well devices or lines are matched. A match is good if the return loss is high. A high return loss is desirable and results in a lower insertion loss.
This is correct for reflection coefficients with a magnitude no greater than unity, which is usually the case. A reflection coefficient with a magnitude greater than unity, such as in a tunnel diode amplifier, will result in a negative value for this expression. VSWR, however, from its definition, is always positive.
The primary coefficients are the physical properties of the line, namely R,C,L and G, from which the secondary coefficients may be derived using the telegrapher's equation. In the field of transmission lines, the term transmission coefficient has a different meaning despite the similarity of name: it is the companion of the reflection coefficient.
Log area ratios (LAR) can be used to represent reflection coefficients (another form for linear prediction coefficients) for transmission over a channel. While not as efficient as line spectral pairs (LSPs), log area ratios are much simpler to compute. Let be the kth reflection coefficient of a filter, the kth LAR is: