Search results
Results from the WOW.Com Content Network
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
A PMD compensation system is a device which uses a polarization controller to compensate for PMD in fibers.Essentially, one splits the output of the fiber into two principal polarizations (usually those with dτ dω = 0, i.e. no first-order variation of time-delay with frequency), and applies a differential delay to re-synchronize them.
An ideal delay line characteristic has constant attenuation and linear phase variation, with frequency, i.e. it can be expressed by =where τ is the required delay.. As shown in lattice networks, the series arms of the lattice, za, are given by
In optics, group-velocity dispersion (GVD) is a characteristic of a dispersive medium, used most often to determine how the medium affects the duration of an optical pulse traveling through it. Formally, GVD is defined as the derivative of the inverse of group velocity of light in a material with respect to angular frequency , [ 1 ] [ 2 ]
DDEs are also called time-delay systems, systems with aftereffect or dead-time, hereditary systems, equations with deviating argument, or differential-difference equations. They belong to the class of systems with the functional state , i.e. partial differential equations (PDEs) which are infinite dimensional, as opposed to ordinary ...
4) Group delay, as mentioned by others on this talk page is quite complicated in concept. For example, it cannot give any difinitive or quantifiable information outside the context of modulation and demodulation. And group delay cannot even give the time delay of the DUT frequency components.
Gain and group delay of a fifth-order type II Chebyshev filter with ε = 0.1. The gain and the group delay for a fifth-order type II Chebyshev filter with ε=0.1 are plotted in the graph on the left. It can be seen that there are ripples in the gain in the stopband but not in the pass band.
Propagation delay is equal to d / s where d is the distance and s is the wave propagation speed. In wireless communication, s=c, i.e. the speed of light. In copper wire, the speed s generally ranges from .59c to .77c. [3] [4] This delay is the major obstacle in the development of high-speed computers and is called the interconnect bottleneck in ...