Search results
Results from the WOW.Com Content Network
The mechanical properties of proteins are highly diverse and are often central to their biological function, as in the case of proteins like keratin and collagen. [110] For instance, the ability of muscle tissue to continually expand and contract is directly tied to the elastic properties of their underlying protein makeup.
Protein dynamics and conformational changes allow proteins to function as nanoscale biological machines within cells, often in the form of multi-protein complexes. [14] Examples include motor proteins, such as myosin, which is responsible for muscle contraction, kinesin, which moves cargo inside cells away from the nucleus along microtubules ...
Knowing the structure of a similar homologous sequence (for example a member of the same protein family) allows highly accurate prediction of the tertiary structure by homology modeling. If the full-length protein sequence is available, it is possible to estimate its general biophysical properties, such as its isoelectric point.
At the top level are all alpha proteins (domains consisting of alpha helices), all beta proteins (domains consisting of beta sheets), and mixed alpha helix/beta sheet proteins. While most proteins adopt a single stable fold, a few proteins can rapidly interconvert between one or more folds. These are referred to as metamorphic proteins. [5]
These properties influence protein structure and protein–protein interactions. The water-soluble proteins tend to have their hydrophobic residues ( Leu , Ile , Val , Phe , and Trp ) buried in the middle of the protein, whereas hydrophilic side chains are exposed to the aqueous solvent.
The image above contains clickable links This diagram (which is interactive) of protein structure uses PCNA as an example. (The tertiary structure of a protein consists of the way a polypeptide is formed of a complex molecular shape. This is caused by R-group interactions such as ionic and hydrogen bonds, disulphide bridges, and hydrophobic ...
Metalloprotein is a generic term for a protein that contains a metal ion cofactor. [1] [2] A large proportion of all proteins are part of this category. For instance, at least 1000 human proteins (out of ~20,000) contain zinc-binding protein domains [3] although there may be up to 3000 human zinc metalloproteins. [4]
For example, while biology refers to macromolecules as the four large molecules comprising living things, in chemistry, the term may refer to aggregates of two or more molecules held together by intermolecular forces rather than covalent bonds but which do not readily dissociate.