Search results
Results from the WOW.Com Content Network
In geometry, a 9-cube is a nine-dimensional hypercube with 512 vertices, 2304 edges, 4608 square faces, 5376 cubic cells, 4032 tesseract 4-faces, 2016 5-cube 5-faces, 672 6-cube 6-faces, 144 7-cube 7-faces, and 18 8-cube 8-faces. It can be named by its Schläfli symbol {4,3 7}, being composed of three 8-cubes around each 7-face.
Printable version; In other projects ... Fundamental convex regular and uniform polytopes in dimensions 2–10. Family: A n: B n: I 2 (p) ... 9-orthoplex • 9-cube ...
In nine-dimensional geometry, a rectified 9-cube is a convex uniform 9-polytope, being a rectification of the regular 9-cube. There are 9 rectifications of the 9-cube. The zeroth is the 9-cube itself, and the 8th is the dual 9-orthoplex. Vertices of the rectified 9-cube are located at the edge-centers of the 9-orthoplex. Vertices of the ...
5-cube, Rectified 5-cube, 5-cube, Truncated 5-cube, Cantellated 5-cube, Runcinated 5-cube, Stericated 5-cube; 5-orthoplex, Rectified 5-orthoplex, Truncated 5-orthoplex, Cantellated 5-orthoplex, Runcinated 5-orthoplex; Prismatic uniform 5-polytope For each polytope of dimension n, there is a prism of dimension n+1. [citation needed]
Printable version; In other projects Appearance. move to sidebar hide ... 9-cube: 10-cube This page was last edited on 21 October 2024, at 09:20 (UTC). ...
Printable version; In other projects ... Trirectified 9-cube: Birectified 9-cube: ... In nine-dimensional geometry, a rectified 9-simplex is a convex uniform 9 ...
Expansion involves moving each face away from the center (by the same distance to preserve the symmetry of the Platonic solid) and taking the convex hull. An example is the rhombicuboctahedron, constructed by separating the cube or octahedron's faces from the centroid and filling them with squares. [8]
Convex regular icosahedron. Let P and Q be combinatorially equivalent 3-dimensional convex polytopes; that is, they are convex polytopes with isomorphic face lattices. Suppose further that each pair of corresponding faces from P and Q are congruent to each other, i.e. equal up to a rigid motion. Then P and Q are themselves congruent.