Search results
Results from the WOW.Com Content Network
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...
Many applications of reinforcement learning do not involve just a single agent, but rather a collection of agents that learn together and co-adapt. These agents may be competitive, as in many games, or cooperative as in many real-world multi-agent systems. Multi-agent reinforcement learning studies the problems introduced in this setting.
Observational learning is learning that occurs through observing the behavior of others. It is a form of social learning which takes various forms, based on various processes. In humans, this form of learning seems to not need reinforcement to occur, but instead, requires a social model such as a parent, sibling, friend, or teacher with ...
Social learning theory is a theory of social behavior that proposes that new behaviors can be acquired by observing and imitating others. It states that learning is a cognitive process that takes place in a social context and can occur purely through observation or direct instruction, even in the absence of motor reproduction or direct reinforcement. [1]
Learning Engineering is the systematic application of evidence-based principles and methods from educational technology and the learning sciences to create engaging and effective learning experiences, support the difficulties and challenges of learners as they learn, and come to better understand learners and learning. It emphasizes the use of ...
Behaviorists look at learning as an aspect of conditioning and advocating a system of rewards and targets in education. Educators who embrace cognitive theory believe that the definition of learning as a change in behaviour is too narrow, and study the learner rather than their environment—and in particular the complexities of human memory .
Reinforcement is particularly effective in the learning environment if context conditions are similar. [33] Recent research indicates that behavioral interventions produce the most valuable results when applied during early childhood and early adolescence. [34] Positive reinforcement motivates better than punishment.
In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .