Search results
Results from the WOW.Com Content Network
Antifreeze proteins (AFPs) or ice structuring proteins refer to a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival in temperatures below the freezing point of water.
A cryoprotectant is a substance used to protect biological tissue from freezing damage (i.e. that due to ice formation). Arctic and Antarctic insects, fish and amphibians create cryoprotectants (antifreeze compounds and antifreeze proteins) in their bodies to minimize freezing damage during cold winter periods.
Cryobiology of plants explores the cellular and molecular adaptations plants develop to survive subzero temperatures, such as antifreeze proteins (AFP) and changes in membrane composition. Cryopreservation is a critical technique in plant cryobiology, used for the long-term storage of genetic material and the preservation of endangered species ...
Antifreeze proteins are also synthesized to keep psychrophiles' internal space liquid, and to protect their DNA when temperatures drop below water's freezing point. By doing so, the protein prevents any ice formation or recrystallization process from occurring.
The winter flounder is one such fish that utilizes these proteins to survive in its frigid environment. The liver secretes noncolligative proteins into the bloodstream. [13] Other animals use colligative antifreezes, which increases the concentration of solutes in their bodily fluids, thus lowering their freezing point.
Within the apoplast, antifreeze proteins localize the growth of ice crystals by ice nucleators in order to prevent physical damage to tissues and to promote supercooling within freezing-sensitive tissues and cells. Osmotic stress, including dehydration, high salinity, as well as treatment with abscisic acid, can also enhance freezing tolerance.
Antifreeze proteins refer to chemical compounds produced by certain animals, plants, and other organisms that prevent the formation of ice. In this way, these compounds allow their host organism to operate at temperatures well below the freezing point of water.
This species and other species in the Trematomus genus have two antifreeze proteins (AFPs): antifreeze glycoproteins (AFGPs) and antifreeze potentiating proteins (AFPPs). These AFPs absorb to internal ice crystals that would inhibit growth and lower the freezing point of these species' blood to below the freezing point of the surrounding ...