Search results
Results from the WOW.Com Content Network
Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.
Enzyme induction is a process in which a molecule (e.g. a drug) induces (i.e. initiates or enhances) the expression of an enzyme. Enzyme inhibition can refer to the inhibition of the expression of the enzyme by another molecule; interference at the enzyme-level, basically with how the enzyme works.
The reaction catalysed by an enzyme uses exactly the same reactants and produces exactly the same products as the uncatalysed reaction. Like other catalysts, enzymes do not alter the position of equilibrium between substrates and products. [1] However, unlike uncatalysed chemical reactions, enzyme-catalysed reactions display saturation kinetics.
An illustration to show (a) Alberty-Hammes-Eigen model, and (b) Chou's model, where E denotes the enzyme whose active site is colored in red, while the substrate S in blue. The theory of diffusion-controlled reaction was originally utilized by R.A. Alberty, Gordon Hammes, and Manfred Eigen to estimate the upper limit of enzyme-substrate reaction.
In autocatalysis a reaction product is itself a catalyst for that reaction leading to positive feedback. Proteins that act as catalysts in biochemical reactions are called enzymes. Michaelis–Menten kinetics describe the rate of enzyme mediated reactions. A catalyst does not affect the position of the equilibrium, as the catalyst speeds up the ...
In biochemistry, a rate-limiting step is a reaction step that controls the rate of a series of biochemical reactions. [1] [2] The statement is, however, a misunderstanding of how a sequence of enzyme-catalyzed reaction steps operate. Rather than a single step controlling the rate, it has been discovered that multiple steps control the rate.
Regulatory enzymes are commonly the first enzyme in a multienzyme system: the product of the reaction catalyzed by the first enzyme is the substrate of the second enzyme, so the cell can control the amount of resulting product by regulating the activity of the first enzyme of the pathway.
Several factors affect the activity of enzymes (and other catalysts) including temperature, pH, the concentration of enzymes, substrate, and products. A particularly important reagent in enzymatic reactions is water, which is the product of many bond-forming reactions and a reactant in many bond-breaking processes.