Search results
Results from the WOW.Com Content Network
In electrical engineering, a dielectric withstand test (also pressure test, high potential test, hipot test, or insulation test) is an electrical safety test performed on a component or product to determine the effectiveness of its insulation. The test may be between mutually insulated sections of a part, or energized parts and ground.
A dielectric voltage withstand test (also known as a hipot test) is done by applying a voltage higher than operating voltage to the device or installation under test. In this test, the electric insulation of a product or installation is put under a voltage stress much higher than its normal operating voltage.
The transformer oil is filled in the vessel of the testing device. Two standard-compliant test electrodes with a typical clearance of 2.5 mm are surrounded by the dielectric oil. A test voltage is applied to the electrodes and is continuously increased up to the breakdown voltage with a constant, standard-compliant slew rate of e.g. 2 kV/s.
In electromagnetism, a dielectric (or dielectric medium) is an electrical insulator that can be polarised by an applied electric field.When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor, because they have no loosely bound, or free, electrons that may drift through the material, but instead they ...
VLF cable testing (Very Low Frequency) is a technique for testing of medium and high voltage (MV and HV) cables. VLF systems are advantageous in that they can be manufactured to be small and lightweight; making them useful – especially for field testing where transport and space can be issues.
Electrical breakdown in an electric discharge showing the ribbon-like plasma filaments from a Tesla coil.. In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material (a dielectric), subjected to a high enough voltage, suddenly becomes a conductor and current flows through it.
Dielectric films tend to exhibit greater dielectric strength than thicker samples of the same material. For instance, the dielectric strength of silicon dioxide films of thickness around 1 μm is about 0.5 GV/m. [3] However very thin layers (below, say, 100 nm) become partially conductive because of electron tunneling.
Time-dependent gate oxide breakdown (or time-dependent dielectric breakdown, TDDB) is a kind of transistor aging, a failure mechanism in MOSFETs, when the gate oxide breaks down as a result of long-time application of relatively low electric field (as opposed to immediate breakdown, which is caused by strong electric field).