Search results
Results from the WOW.Com Content Network
"Degree" in this case can refer to degree Celsius or degree Fahrenheit. When based on Celsius, 0 degrees of frost is the same as 0 °C, and any other value is simply the negative of the Celsius temperature. When based on Fahrenheit, 0 degrees of frost is equal to 32 °F. Conversion formulas: T [degrees of frost] = 32 °F − T [°F] T [°F ...
Freezing [1] or frost occurs when the air temperature falls below the freezing point of water (0 °C, 32 °F, 273 K). This is usually measured at the height of 1.2 metres above the ground surface. This is usually measured at the height of 1.2 metres above the ground surface.
However, the strong hydrogen bonds in water make it different: for some pressures higher than 1 atm (0.10 MPa), water freezes at a temperature below 0 °C (32 °F). Ice, water, and water vapour can coexist at the triple point, which is exactly 273.16 K (0.01 °C) at a pressure of 611.657 Pa.
The melting point of water at 1 atmosphere of pressure is very close to 0 °C (32 °F; 273 K), and in the presence of nucleating substances the freezing point of water is close to the melting point, but in the absence of nucleators water can supercool to −40 °C (−40 °F; 233 K) before freezing.
Many plants can be damaged or killed by freezing temperatures or frost. This varies with the type of plant, the tissue exposed, and how low temperatures get; a "light frost" of −2 to 0 °C (28 to 32 °F) damages fewer types of plants than a "hard frost" below −2 °C (28 °F). [9] [10]
For example, mercury freezes below 234.32 K, so temperatures lower than that cannot be measured in a scale based on mercury. Even ITS-90, which interpolates among different ranges of temperature, has a range of only 0.65 K to approximately 1358 K (−272.5 °C to 1085 °C).
Temperatures fell below minus 40 degrees Celsius (minus 40 degrees Fahrenheit) in the Nordic region for a second day in a row Wednesday. In Kvikkjokk-Årrenjarka in Swedish Lapland, the mercury ...
This is a collection of temperature conversion formulas and comparisons among eight different temperature scales, several of which have long been obsolete.. Temperatures on scales that either do not share a numeric zero or are nonlinearly related cannot correctly be mathematically equated (related using the symbol =), and thus temperatures on different scales are more correctly described as ...