Search results
Results from the WOW.Com Content Network
Correct the cell velocities: + = ′ ; where ′ is the gradient of the pressure corrections, is the vector of central coefficients for the discretized linear system representing the velocity equation and Vol is the cell volume. Update density due to pressure changes.
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
A relatively simple version [1] of the vertical fluid pressure variation is simply that the pressure difference between two elevations is the product of elevation change, gravity, and density. The equation is as follows: =, where P is pressure, ρ is density, g is acceleration of gravity, and; h is height.
In fluid mechanics, inertance is a measure of the pressure difference in a fluid required to cause a unit change in the rate of change of volumetric flow-rate with time. The base SI units of inertance are kg m −4 or Pa s 2 m −3 and the usual symbol is I. The inertance of a tube is given by: = where
Solve the discretized momentum equation to compute an intermediate velocity field. Compute the mass fluxes at the cells faces. Solve the pressure equation. Correct the mass fluxes at the cell faces. Correct the velocities on the basis of the new pressure field. Update the boundary conditions. Repeat from 3 for the prescribed number of times.
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
The modern method is simply to create a set of conditions from the above Kirchhoff laws (junctions and head-loss criteria). Then, use a Root-finding algorithm to find Q values that satisfy all the equations. The literal friction loss equations use a term called Q 2, but we want to preserve any changes in
Δp is the pressure difference between the two ends, L is the length of pipe, μ is the dynamic viscosity, Q is the volumetric flow rate, R is the pipe radius, A is the cross-sectional area of pipe. The equation does not hold close to the pipe entrance. [8]: 3 The equation fails in the limit of low viscosity, wide and/or short pipe.