Search results
Results from the WOW.Com Content Network
The following are among the properties of log-concave distributions: If a density is log-concave, so is its cumulative distribution function (CDF). If a multivariate density is log-concave, so is the marginal density over any subset of variables. The sum of two independent log-concave random variables is log-concave. This follows from the fact ...
The Brunn–Minkowski inequality asserts that the Lebesgue measure is log-concave. The restriction of the Lebesgue measure to any convex set is also log-concave.. By a theorem of Borell, [2] a probability measure on R^d is log-concave if and only if it has a density with respect to the Lebesgue measure on some affine hyperplane, and this density is a logarithmically concave function.
The rows of Pascal's triangle are examples for logarithmically concave sequences. In mathematics, a sequence a = (a 0, a 1, ..., a n) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if a i 2 ≥ a i−1 a i+1 holds for 0 < i < n.
This is the source of the log-concave restriction: if a distribution is log-concave, then its logarithm is concave (shaped like an upside-down U), meaning that a line segment tangent to the curve will always pass over the curve. If not working in log space, a piecewise linear density function can also be sampled via triangle distributions [8]
Log-concave may refer to: Logarithmically concave function; Logarithmically concave measure; Logarithmically concave sequence This page was last edited on 22 ...
A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ) distribution, then
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
When sampling from a full-conditional density is not easy, a single iteration of slice sampling or the Metropolis-Hastings algorithm can be used within-Gibbs to sample from the variable in question. If the full-conditional density is log-concave, a more efficient alternative is the application of adaptive rejection sampling (ARS) methods.