Search results
Results from the WOW.Com Content Network
A checksum is a small-sized block of data derived from another block of digital data for the purpose of detecting errors that may have been introduced during its transmission or storage. By themselves, checksums are often used to verify data integrity but are not relied upon to verify data authenticity .
A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones'-complement operation prior to transmission to detect unintentional all-zero messages.
The first weakness of the simple checksum is that it is insensitive to the order of the blocks (bytes) in the data word (message). If the order is changed, the checksum value will be the same and the change will not be detected. The second weakness is that the universe of checksum values is small, being equal to the chosen modulus.
This system detects all single-digit errors and around 90% [citation needed] of transposition errors. 1, 3, 7, and 9 are used because they are coprime with 10, so changing any digit changes the check digit; using a coefficient that is divisible by 2 or 5 would lose information (because 5×0 = 5×2 = 5×4 = 5×6 = 5×8 = 0 modulo 10) and thus ...
File verification is the process of using an algorithm for verifying the integrity of a computer file, usually by checksum.This can be done by comparing two files bit-by-bit, but requires two copies of the same file, and may miss systematic corruptions which might occur to both files.
Since the source is only 4 bits then there are only 16 possible transmitted words. Included is the eight-bit value if an extra parity bit is used (see Hamming(7,4) code with an additional parity bit).
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
An n-dimensional parity scheme is only guaranteed to correct up to n/2 errors, as the minimum distance is (n + 1). As with all block codes , a soft-decision decoder may be able to correct more than this.