Search results
Results from the WOW.Com Content Network
There are many statistical packages that can be used to find structural breaks, including R, [17] GAUSS, and Stata, among others.For example, a list of R packages for time series data is summarized at the changepoint detection section of the Time Series Analysis Task View, [18] including both classical and Bayesian methods.
Ideally, unevenly spaced time series are analyzed in their unaltered form. However, most of the basic theory for time series analysis was developed at a time when limitations in computing resources favored an analysis of equally spaced data, since in this case efficient linear algebra routines can be used and many problems have an explicit ...
[1] [2] Given two completely unrelated but integrated (non-stationary) time series, the regression analysis of one on the other will tend to produce an apparently statistically significant relationship and thus a researcher might falsely believe to have found evidence of a true relationship between these variables.
In Gretl, the option --robust to several estimation commands (such as ols) in the context of a time-series dataset produces Newey–West standard errors. [ 16 ] In SAS , the Newey–West corrected standard errors can be obtained in PROC AUTOREG and PROC MODEL [ 17 ]
The first such approach was proposed by Huber (1967), and further improved procedures have been produced since for cross-sectional data, time-series data and GARCH estimation. Heteroskedasticity-consistent standard errors that differ from classical standard errors may indicate model misspecification.
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.
This is an important technique for all types of time series analysis, especially for seasonal adjustment. [2] It seeks to construct, from an observed time series, a number of component series (that could be used to reconstruct the original by additions or multiplications) where each of these has a certain characteristic or type of behavior.
Bayesian structural time series (BSTS) model is a statistical technique used for feature selection, time series forecasting, nowcasting, inferring causal impact and other applications. The model is designed to work with time series data. The model has also promising application in the field of analytical marketing. In particular, it can be used ...