Search results
Results from the WOW.Com Content Network
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation.Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be observed.
Sub-GeV dark matter has been used to explain the positron excess in the Galactic Center observed by INTEGRAL, excess gamma rays from the Galactic Center [7] and extragalactic sources. It has also been suggested that light dark matter may explain a small discrepancy in the measured value of the fine structure constant in different experiments. [8]
Dark matter is called ‘dark’ because it’s invisible to us and does not measurably interact with anything other than gravity. It could be interspersed between the atoms that make up the Earth ...
Dark matter is a form of matter that neither emits nor absorbs light. Within physics, this behavior is characterized by dark matter not interacting with electromagnetic radiation, hence making it dark and rendering it undetectable via conventional instruments in physics. [1]
The founding principle of direct dark matter detection is that since dark matter is known to exist in the local universe, as the Earth, Solar System, and the Milky Way Galaxy carve out a path through the universe they must intercept dark matter, regardless of what form it takes. Direct detection of dark matter faces several practical challenges.
In April 2023, a study investigated four extremely redshifted objects discovered by the James Webb Space Telescope. [5] Their study suggested that three of these four, namely JADES-GS-z13-0, JADES-GS-z12-0, and JADES-GS-z11-0, are consistent with being point sources, and further suggested that the only point sources which could exist in this time and be bright enough to be observed at these ...
There are several proposed types of exotic matter: Hypothetical particles and states of matter that have not yet been encountered, but whose properties would be within the realm of mainstream physics if found to exist.
The presence of dark matter (DM) in the halo is inferred from its gravitational effect on a spiral galaxy's rotation curve.Without large amounts of mass throughout the (roughly spherical) halo, the rotational velocity of the galaxy would decrease at large distances from the galactic center, just as the orbital speeds of the outer planets decrease with distance from the Sun.